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Abstract Molecular dynamics simulations were performed
to investigate the separation of zinc ions as a heavy metal
from water using boron nitride nanotubes. The studied sys-
tems included boron nitride (BN) nanotubes embedded in a
silicon-nitride membrane immersed in an aqueous solution of
ZnCl,. An external electric field was applied to the system
along the axis of the BN nanotubes. The results show that the
(7,7) and (8,8) BN nanotubes were exclusively selective of
ions. The (7,7) BN nanotube selectively conducted Zn" ions,
while the (8,8) BN nanotube selectively conducted CI ions.
The results were confirmed using additional simulated param-
eters. The results indicate that the passage of ions through
nanotubes is related to the diameter of the BN nanotubes.

Keywords Boron nitride nanotube - Desalination - Heavy
metals - Molecular dynamics - Nanostructured membrane

Introduction

The expansion of effective low-cost water desalination and
methods for the removal of heavy metal ions such as zinc from
water are important from both the environmental and econom-
ic perspectives. While organisms need heavy metals to
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perform their biological tasks, the toxic effect of these metals
can contribute to neuronal disease pathogenesis. Although
living organisms require low amounts of heavy metals, exces-
sive amounts can be damaging. Toxicity from heavy metals
can result in damaged or reduced mental and central nervous
function. Therefore, the removal of heavy metal ions from
contaminated water has become an important subject [1-8].
Zinc, a heavy metal, is necessary to humans because it con-
tributes to the physiology of living tissue and biochemical
processes. Nevertheless, high levels of zinc can cause human
health disorders, such as stomach cramps, skin irritation, and
vomiting [9]. Several techniques have been proposed for the
elimination of heavy metals from wastewater, including ion-
exchange [10], coagulation and flocculation [11], chemical
precipitation [12], reverse osmosis [13], adsorption [14], and
other methods [15-18].

Selective ion transport via nanostructures is of interest in a
wide range of chemical and physical fields. Nanotubes have
potential uses in the purification and desalination industries.
Boron nitride (BN) nanotubes are important to researchers
because of their significant electronic properties and structural
uses [19-21]. In the field of fluid transport properties of the
BN nanotubes, Aluru and coworkers reported the ionic selec-
tivity of BN nanotubes relative to chloride and potassium ions
and they showed that (10,10) BN nanotube could be
transported by chloride ions [22]. Chen and coworkers have
demonstrated that BN nanotubes had interactions with pro-
teins and cells and their properties are encouraging for their
application in biocompatible materials [23]. In other work, the
structure and dynamics of water confined in BN nanotubes
have been studied by MD method and the passage way of
water molecules is investigated [24].

BN nanotubes have chirality, which is a geometrical pa-
rameter; however, in terms of controlling electrical properties,
chirality does not play a significant role [25]. BN nanotube
was theoretically predicted in 1994 [26] and then
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experimentally synthesized in 1995 [27]. In recent years, most
studies have been done on the synthesis of BN nanotubes
[28-31]. To date, scientists designed and synthesized ion-
selective nanotubes [22, 32-35].

Due to the lack of theoretical studies on zinc ion separation
from water through a membrane containing BN nanotubes,
here we apply molecular dynamics simulation techniques and
investigate the removal of zinc from aqueous solutions using
BN nanotubes. We used BN nanotubes with (7,7) and (8,8)
chirality, fixed in a silicon-nitride membrane, and immersed in
0.5 mol L™" ZnCl, aqueous solution (see Fig. 1). The length of
the BN nanotubes was 15 A and the radius was 4.89 A and
5.54 A for the (7,7) and (8,8) chirality nanotubes, respectively.
The BN nanotubes and the membrane affect each other via
both van der Waals and electrostatic interactions. Due to the
partial charges on the boron and nitrogen atoms of BN nano-
tubes and silicon and nitrogen atoms of silicon-nitride mem-
brane, electrostatic interactions are dominant and the source of
selectivity for ion transport.

Methods

We used BN nanotubes with (7,7) and (8,8) chirality and
optimized their geometries at the B3LYP level of theory using
the 6-31G(2d,2p) basis set, accomplished in the GAMESS-
US package [36]. The optimized B-N bond distance was
calculated as 1.446 A. Partial charges used in the MD simu-
lation were —0.4 and +0.4 for nitrogen and boron atoms,
respectively. In addition, the length of the BN nanotubes in
their selectivity properties had no effect. For B and N atoms,
the Lennard-Jones parameters were obtained from Aluru [37,
32], with the following parameters: €,,,,,=0.094 kcal mol !,
Tporon=3453 A, Eitrogen=0.144 keal mol™, and o,,ipogen=
3.365 A. The interaction parameters between different species
systems were obtained using Lorentz-Berthelot combining
rules. In this work, we used the partial charges determined
by DFT for BN nanotubes [38].

We performed molecular dynamics simulations using
Nanoscale Molecular Dynamics program (NAMD) [39] as
in previous works [40, 41] with a 1 fs time step and visualized
using visual molecular dynamics (VMD) [42]. In the NAMD
package, the potential energy of intermolecular interactions is
given through Eq. 1.

v =se0|(2) () ]+

where rj; is the distance between the atoms i and j, q; and g;
are the partial charge assigned to atoms i and j, and &;; and oj;
are the usual empirical Lennard-Jones parameters, obtained by
Lorentz-Berthelot combining rules, where 0;,=(0;+0;)/2 and
ei=(cy 54-,-)0‘5 . Also, all analysis scripts were composed locally

qi-9;
dmegry’

(1)
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Fig. 1 A snapshot of the simulated system (green: (7,7) BN nanotube,
tan: silicon-nitride membrane, blue: Zn>*; yellow: C1'; red: O; white: H)

using the VMD and Tcl commands. The simulation settings
are as follows: (7) van der Waals interactions were truncated by
a 12 A cutoff, (ii) the particle mesh Ewald algorithm [43] was
used for electrostatic calculations with an interpolation func-
tion of order 5, (iii) the MD domain consisted of a BN
nanotube, a silicon-nitride membrane, water, and ions, (iv)
the periodic boundary conditions were used in all three direc-
tions to mimic systems with an infinitely large area, (v) the
simulation box for all runs was 35x41x50 A3, and (vi) the
system was subjected to a zero-temperature energy minimiza-
tion for 0.5 ns and then equilibrated with molecular dynamics
for 5 ns at 298 K before data collection.

An electric field was used for all of the systems in the
simulation. The applied electric field was defined by Eq. 2.

-
et = —23.0605492 - (2)

4

where ejei4, ¥, and L are the applied electric field (in kcal
(mol A e) ), potential difference (in volts), and size of the
system along the z-axis (in Angstroms), respectively [44]. The
structure was equilibrated for 0.5 ns to a constant pressure of
1 bar and a constant temperature of 298 K. We employed the
Langevin dynamics method to keep the temperature at 298 K.
The pressure was maintained at 1 bar using a Nose-Hoover
Langevin piston. To represent water molecules, the TIP3P
model (the intermolecular three-point potential) was used
[45]. This model is remarkably successful at modeling liquid
water under ambient conditions and is reasonably successful
under other conditions. Three site models have three
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interaction points corresponding to the three atoms of the
water molecule. Each site has a point charge, and the site
corresponding to the oxygen atom also has the Lennard-
Jones parameters. Since 3-site models achieve a high compu-
tational efficiency, these are widely used in molecular dynam-
ics simulations. Most of the models use a rigid geometry
matching that of actual water molecules. One of these models
is the TIP3P model, which assumes an ideal shape (HOH
angle of 104.52°) and partial charge for hydrogen and oxygen
atoms are +0.417 and —0.834, respectively. The CHARMM
force field [46] was employed to describe the interatomic
interactions for all atoms. In this work, the silicon-nitride
membrane and the BN nanotubes were restrained with a
harmonic constraint for all runs, while water molecules
and ions were allowed to move freely. The current versus
voltage curve for the studied systems was obtained at an ionic
concentration of 0.5 mol L™'. The amount of current was
calculated by Eq. 3.

I =ngq/At, (3)

where n, ¢, and At are the average number of ions that cross
the BN nanotube, the charge of the ion, and the simulation
time of one run, respectively.

The contrasting ion selectivity of BN nanotubes was illus-
trated by calculating the potential of mean force (PMF) [47]
along the z-axis. After averaging the force on the molecules at
different z positions along the nanotube axis, PMF was calcu-
lated by means of integrating the mean force along the z-axis.
The ends of the reservoirs were taken as the reference position
where the PMF was zero.

The ion was moved through positions from 0 to 15 A in
0.5 A increments. The z component of ions was held using a
harmonic constraint of 12.5 kcal mol ' A while the ion was
free to move radially. This harmonic constraint was selected to
give enough overlap between each window and its neighbors
while constraining the ions enough to ensure adequate sam-
pling of the entire reaction coordinate. Each sampling window
is run for 1 ns. The PMF of the ion moving through the
nanotube was computed by the umbrella sampling technique
[48] and the data were analyzed using the weighted histogram
analysis method (WHAM) [49].

Results and discussion

We performed molecular dynamics simulations to investigate
the separation of Zn>" ions from water through BN nanotubes
with different chirality. Additionally, to study other properties
of the system, the following parameters were obtained: the
ionic current, normalized transport rate of water, retention
time and ion-water radial distribution functions.

Water is a good solvent for ions and polar molecules and an
exceptionally poor solvent for non-polar or hydrophobic sol-
utes [50, 51]. The interaction of ions with water can lead to
breakage of this structure, replaced by a different order of the
molecules in the local field of the ion. Figure 2 shows the
organization of water molecules in BN nanotubes. In Fig. 2a,
the dipole vector of the water molecules orients to the walls of
(7,7) BN nanotube, while in Fig. 2b, the dipole vector of the
water molecules orients toward the axis of (8,8) BN nanotube.
In fact, their orientation is in such a way that in the (7,7) BN
nanotube, and zinc atoms (with a positive charge) are near the
oxygen atoms (with a negative charge). In the (8,8) BN
nanotube chlorine atoms (with a negatively charge) are near
the hydrogen atoms (with a positive charge). The orientation
of dipole vector of water molecules was due to different atoms
that were located in the surrounding BN nanotubes. The
nitrogen and silicon atoms of the membrane were surrounded
in the (7,7) BN nanotube and (8,8) BN nanotube, respectively,
as shown in Fig. 3. These arrangements of atoms depend on
the size of the embedded pore. According to DFT calculations,
the nitrogen atoms of the BN nanotubes shift outward due to
the electronic structure. With a (7,7) BN nanotube embedded
in a silicon-nitride membrane, nitrogen atoms in the matrix
surround the outer surface of the pore, thus causing the boron
atoms of the tube to shift slightly outward relative to the
nitrogen atoms of the tube. Conversely, with the (8,8) BN
nanotube, silicon atoms surround the surface of the pore, and
the nitrogen atoms of the nanotube move outward relative to
the boron atoms. Small shifts in the relative positions of the
boron and nitrogen atoms partially account for the ion selec-
tivity observed in our system.

Although the considered BN nanotubes had a large radius
to accept cations and anions, our results indicate that one Zn*"
ion entered the (7,7) BN nanotube, and was able to come out.
In contrast, chlorine ions could not enter the (7,7) BN nano-
tube. In the case of the (8,8) BN nanotube, the opposite
phenomenon occurred. This different behavior was governed
by the different orientation of the dipole vector of the water
molecules (see Fig. 2).

Since the ionic radius of chlorine is greater than zinc, the
Zn*" ions with smaller ionic radii are able to pass through the
(7,7) BN nanotube. However, this different ionic radius is not
the main reason for the selective passage of ions from BN
nanotubes but it can be an auxiliary factor. As mentioned
above, the main cause of this phenomenon is the different
orientation of the dipole vector of the water molecules.

The most important observation seems to be that the nature
of the BN nanotubes has a large effect in determining the ion-
specific flux and is more important than the nature of the
embedding membrane. Specifically, Zn>" ions encountered a
favorable PMF in entering (7,7) BN nanotube, while the C1™
ions are repelled from it. In the case of (8,8) BN nanotube
showed different behavior than (7,7) BN nanotube. The (8,8)
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Fig. 2 The orientation of water molecules within BN nanotubes: a: (7,7)
BN nanotube; b: (8,8) BN nanotube

BN nanotube was favorable for Cl” ions permeation, while the
Zn*" ions are repelled from it.

The thermodynamic basis of the observed ion selectivity
was explored by the calculation of potentials of mean force for
a given ion as it moved along the (z) axis of the pore. Figure 4
shows the PMF values for the studied systems. Figure 4a
shows that in the case of (7,7) BN nanotube, there was an
energy barrier for chloride ions to prevent them from entering
into the (7,7) BN nanotube.

In the case of (8,8) BN nanotube, an energy barrier exists
for Zn>* ions, as shown in Fig. 4b. In these BN nanotubes, a
deep energy well for ions occurred due to dipole of the water
molecules inside the nanotube. The PMF was computed with-
out any external field. When no electric field was applied, the
ions could enter the BN nanotube and accumulated near the

Fig. 3 Left: Nitrogen atoms of
the membrane surrounding a (7,7)
BN nanotube. Right: Silicon
atoms of the membrane
surrounding an (8,8) BN
nanotube (blue and cyan: BN
nanotube; blue: nitrogen atoms of
the membrane; yellow: silicon
atoms of the membrane)
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Fig. 4 The potential of mean force for Zn>" and CI” ions in a: (7,7) BN

nanotube ; b: (8,8) BN nanotube

pore center. In the case of application of an electric field, the
ions overcame the potential barrier and could exit from the
nanotube.

In our simulations, the PMF was increased at the pore
openings and reached a maximum value at the pore center
inside the BN nanotube. This was due to the high symmetry of
the system and interactions between anions, BN nanotubes,
and the membrane. This is in agreement with the results of
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Fig. 5 Current—voltage curves for Zn>" ions in (7,7) BN nanotube and
CI ion in (8,8) BN nanotube. Each data point represents the average of
five sets of simulations. Lines were obtained from linear regression

simulations showing that anions cannot penetrate the (7,7) BN
nanotube because PMF has a high free energy barrier [52, 53].

Figure 5 presents the current—voltage profile obtained by
Eq. 3. The current was increased linearly by increasing the
voltage. The linear increase in the current with rising voltage
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Fig. 6 a: The number of ions passing through a BN nanotube: Zn*" ions
in (7,7) BN nanotube and CI ions in (8,8) BN nanotube. b: The number
of water molecules passing through the BN nanotubes. Error bars repre-
sent one standard error of the mean and error bars smaller than the data
points are not shown

Table 1 Transport rate for water molecules

Electric field

Transport rate

(mV) (7,7) BN nanotube (8,8) BN nanotube
32523 44 9

650.46 8.6 13.4

1300.92 16 21.8

1951.38 23.2 26.4

2601.84 31.6 34

32523 38 50

indicated that the number of ions and water molecules passing
across the (7,7) and (8,8) BN nanotubes increased linearly with
applied voltage (Fig. 6). By fitting a linear regression model to
the current—voltage curve, we obtained zinc and chloride con-
ductance values of 363.7 picosiemens (pS) and 197.8 pS for the
(7,7) and (8,8) BN nanotubes, respectively.

We computed the transport rate of the water molecules as
the ratio of the average number of water molecules passing
across the (7,7) and (8,8) BN nanotubes according to the
simulation time (see Table 1). As seen in Table 1, the transport
rate of water increased with increasing voltage. Also, this
parameter was larger for the (8,8) BN nanotube than for
(7,7) BN nanotube due to the large diameter of (8,8) BN
nanotube.

Another simulation parameter studied in this work was the
normalized transport rate of water with respect to the number
of transported ions (see Fig. 7). These results show that the
value of this parameter does not change by changing the
voltage and so is independent of the voltage. Also, this pa-
rameter was greater for (7,7) BN nanotube than (8,8) BN
nanotube. The reason is that although the number of ions
passing through the (7,7) BN nanotube were lower than the
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Fig. 7 Normalized transport rate of water molecules to ions. Error bars
represent one standard error of the mean and error bars smaller than the
data points are not shown

@ Springer



2468, Page 6 of 9

J Mol Model (2014) 20:2468

1.2
o
E ABNNT7-7
S
2 1t ®BNNTS-8 *
an)
S
: s *
= 0.8 é
£
£ 0.6 ¢ i
£ ¢ r'y
-
S
3
o 04 ; 4
g A
5 A
-
S 02F
=)
£
=
0 . . , , \ ,
0 500 1000 1500 2000 2500 3000 3500

Voltage(mV)

Fig. 8 The time average of the normalized H-bonds. Error bars represent
one standard error of the mean and error bars smaller than the data points
are not shown

(8,8) BN nanotube, the hydration number of Zn>" jon was
larger than the hydration number of Cl ion (see Fig. 11). In
Fig. 11, the peak intensity of the radial distribution function of
Zn**-water in the (7,7) BN nanotube was more than that of
CI -water in the (8,8) BN nanotube.

The water network structure inside the BN nanotubes was
interrupted by the construction of the first hydration shell
around the ion. This caused a reduction in the number of
hydrogen bonds between water molecules [54, 55]. To inves-
tigate this phenomenon, we computed the time average of the
normalized hydrogen bonds with respect to the number of
inner water molecules at different voltages (see Fig. 8). As
expected, this parameter increased with increasing voltage.
The time average of the normalized hydrogen bonds was
greater for (8,8) BN nanotube than (7,7) BN nanotube. In
addition, Fig. 9 shows the water density inside the BN nano-
tubes over 5 ns. In this figure, the density of water increased
with increasing voltage due to the high transport of ions at
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Fig. 9 Density of water inside the BN nanotubes. Error bars represent
one standard error of the mean and error bars smaller than the data points
are not shown
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Fig. 10 Retention time for ions at applied voltages: Zn*" in (7,7) BN
nanotube and CI in (8,8) BN nanotube

high voltage. Also, due to the large diameter of (8,8) BN
nanotube, the water density was higher than that in (7,7) BN
nanotube.

Figure 10 indicates the retention time of the ions, which is
the time passage of one ion through the (7,7) and (8,8) BN
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Fig. 11 lon-water radial distribution function within the BN nanotubes
under various electric fields: a: (7,7) BN nanotube and b: (8,8) BN
nanotube
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nanotubes as a function of applied voltage. This figure shows
that a short retention time was found with a strong electric
field. The retention time for Zn>" in the (7,7) BN nanotube
was higher than that of Cl™ in the (8,8) BN nanotube. As seen
in Fig. 4, in the case of (7,7) BN nanotube, there was an
energy well for zinc ions inside the nanotube that is deeper
than the energy well for chloride ions in the (8,8) BN nano-
tube. As a result, due to the deep energy well of zinc
ions in the (7,7) BN nanotube, they spend more time
within the nanotube which increases the retention time
of zinc ions. However, because of the small energy well
of the chloride ion in the (8,8) BN nanotube, Cl™ passes
through the nanotube easily, which caused the short
retention time. These factors and their effects on the
current were also shown in Fig. 5, so that the current
through the (8,8) BN nanotube was higher than through
the (7,7) BN nanotube (see Fig. 5). Due to this, in the case of
the (8,8) BN nanotube, the retention time was short. This
phenomenon shows itself in the radial distribution function.
As can be seen, the intensity peak of the radial distribution

40

35| E-field(kcal/mol.A.e)
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r &)
Fig. 12 Hydration number of the considered ions within the BN nano-

tubes under various electric fields: a: (7,7) BN nanotube and b: (8,8) BN
nanotube

function of the (8,8) BN nanotube was less than that of the
(7,7) BN nanotube.

To describe the structural change of each type of molecule/
atom in the simulation cell, the radial distribution function
(RDF) was calculated from the trajectories saved during the
simulation. Figure 11 illustrates the RDF between ions and
water molecules. As can be seen at a short distance, because of
the repulsive forces between species, RDF is zero. The posi-
tion of the first maximum and minimum peak is the same in all
cases. Nevertheless, the location of the tip of the peak is
different in each case, which indicates that the number
of water molecules in the first hydration shell of the ion
is different [53]. Figure 11a shows the Zn**-water RDF
inside (7,7) BN nanotube, while Fig. 11b shows the
Cl -water RDF inside (8,8) BN nanotube. Also, it can
be seen that the RDFs varied with changing the electric
field. These variations can be explained based on reten-
tion times of the ions. At low voltages, ions spend more
time in BN nanotubes within the hydration shell. In other
words, they have a long retention time and therefore the
RDF would be intensified. Figures 10 and 11 indicate that
the order of RDFs and retention times for the ions are the
same. The RDF with a high peak corresponds to a long
retention time or weak electric field.
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Fig. 13 The z positions of the ions for each simulation at a: low voltage
and b: high voltage
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Figure 12 also includes a graph of the integral of ions-water
RDF that is equal to the hydration number of the considered
ions. This integral is calculated by Eq. 4

Nj = 4r j p.g(,).rz.dr, (4)
0

in which Nj;, p, g¢, and 7 are the number of 7 molecules
around molecule j, density, radial distribution function and the
radial coordinate respectively.

Figure 13 displays the z positions of the ions inside the BN
nanotubes. As can be seen, an overlap exists between the
retention times of ions at low voltages. On the other hand,
for high voltages, this overlap does not exist. This implies that,
with a weak electric field, an ion can go into the BN nanotube
and after entry of the second ion, cannot exit. However, in a
strong electric field, ions can exit the BN nanotube without
any help [56].

Conclusions

Molecular dynamics simulations method were used to study
the permeability of nanotubes for ion selectivity through (7,7)
and (8,8) BN nanotubes. The ion permeation through an
armchair BN nanotube fixed in a silicon-nitride membrane
was selective in the presence of electric field. When a Zn** ion
entered the (7,7) BN nanotube, it was able to pass the entire
length of the nanotube and it came out; Cl  ions were not able
to enter the (7,7) nanotube. In the case of the (8,8) BN
nanotube, the opposite phenomenon occurred. In (7,7) and
(8,8) BN nanotubes, the preferential permeation was reached
without functionalizing the BN nanotubes. The simplicity of
the structure is an advantage for the fabrication nanodevice for
the separation of heavy metals. It can be concluded that the
application of electric field can have an impact on the follow-
ing properties of the studied systems: PMF, the ionic current,
ion retention time, water density, transport rate of the water
molecules, and RDF.
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